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The problem of steady waves of finite amplitude produced by pressure distributed period- 
ically over the surface of a stream of heavy fluid of finite constant depth is considered. 

This problem for a stream of infinite depth was first posed and solved approximately by 

Sretenskii [l] in 1953. The problem is solved rigorously in [2] for an infinitely deep 

stream and for a more general pressure distribution over the surface. As in the case of 

an infinitely deep stream, the pressure is specified in the form of some infinite trigono- 
metric series. We also investigate the special case when the wavelength of the given 

pressure coincides with the length of the steady free wave corres~nding to the specified 

velocity and constant pressure at the surface. The results of the present paper appear in 
condensed form in [3]. 

1. Formulation of the problem and derivation of the basic lntc- 
gral equation, Let us consider the plane-parallel steady motion of an ideal incom- 

pressible heavy fluid of finite constant depth h bounded by a free surface on top ; the 

pressure p = p. (z) at this surface is a given periodic function of the horizontal coor- 

dinate 2. We assume that at this horizontal bottom surface the stream moves with a 

given constant average velocity c directed from left to right. 
Owing to the periodically distributed pressure, the surface of the stream assumes the 

shape of a stationary periodic wave in the coordinates attached to the progressing wave 

moving with the velocity C. 

Let the required wave and the pressure p. (r) be equally symmetric with respect to 
the crest vertical. We direct the y-axis along the axis of symmetry (vertically upward) 

and place the origin 0 at the point of intersection of the y -axis with the free surface, 

and direct the z -axis towards the right. 
We choose the flow plane ry as the plane of the complex variable Z = Z + iy. 
We introduce the usual notation: Q is the velocity potential, Q is the stream function, 

w = q + i$ is the complex velocity potential,and U, v are tile projections of the 
velocity vector q on the coordinate axes. This means that 

dw 
-z= -tlm+if7, 

In order to derive the basic equation of the problem from the boundary condition we 

conformally map the domain occupied by a single wave (which takes the form of a ver- 
tical rectangle bounded on the top by a wavy curve) onto the rectangle 

lcpf~l/s~* o<*P(* 

(here Cp = $,, is the stream discharge per unit time). We then conformally map this 

rectangle onto the interior of a circular ring with its center at the origin of the plane 
u = u1 + iu2. We assume here that the wavelength & coincides with the period of the 

function PI (r). 
As we know, the latter mapping is given by Formula 
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Here the segment 1 cp 1 < V, CA corresponding to a free surface becomes the outer 
circle of unit radius, while the segment corresponding to the bottom becomes the inner 
circle of radius r0 = exp (- 2n +b/qo) = exp (- 2~ch/S) 

smaller than unity. The ring is slotted along the segment (- i, - re)* 
The mapping of this ring in the plane u onto the domain of a single wave in the plane 

z can be found from the relation dz 
du= 

71 f (4 .I.-?- 
2ni u (W 

The function f (u) can be expressed as a Laurent series inside the ring in the plane u 

under consideration. The coefficients of this series must be real by virtue of the symme- 

try of the wave ; the boundary condition of nonleakage at the bottom is fulfilled. 

Making use of the Bernoulli integral at the surface, we convert to the variable ri in the 
latter and set u = et@; recalling that p = p. (z) at the surface, on differentiating 
with respect to 8 we have 1 dp,, & & 1 dp’ -~-~--_6--___ 

p dz d0 de 2 d0 (1.3) 

Here 8 is the angle between the radius vector in the plane u and the axis u, ; p is 

the density ; 6 is the gravitational acceleration ; q is the absolute value of the velocity 
vector, 

As usual, by intruding the unction 143 

Q) (tc) = Q, + iT = - i ln f (u) 

we find from (1.4) and (1.2) that for u = e” 

0 4 

dr I i dv 
x.x= . - & fHe) (CM a) + i sin Uq U.5) 

Formulas (1.4), (1.2) and (1.1) imply that @ is equal to the angle between the velo- 
city vector q and the s-axis everywhere in the stream, and that 

9 = I%?+ (1.6) 

By virtue of (1.5),(1.6), Eq. (1.3) yields a differential relation which we integrate, 

replacing the integration constant by the parameter 
P 

3& = -@=@I 
2lrS 0.7) 

which is related to the additive constant in p,(z). 
Taking the logarithmic derivative of both sides of the resulting integral relation, we 

obtain 
dr 
de= (1.8) 

where 
Q(0)= && 0.9) 

Equation (1.8) gives us the relationship on the circle 1 u 1 = i between the real and 
imaginary parts of the analytic function 0 (u) which is regular inside the ring whose 

outer boundary is the circle ; u [= 1. 
From the theory of analytic functions we know that @ (0) and dx/dQ are related by 

a Dini relation of the form r2 

(1, (0) = 3 
s 

$, A- (q, 0) dtl, 
“, Qn (‘I) Q, (6) 

h(rl*0)== h ,, 
?I=* n 

,I (1.10) 

where the eigenfunctions (Pn (0) and the eigenvalues V,of the kernel K (v,Q) are given 
by Formulas 

(i.ii) 
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From (1.8) and (1.10) we finally obtain 
22 

(1’ (0) = P 5 Ii l(l) (tl), rll [ 1 + CI { /f la’, $1 drll] -I Ei (q, 0) dq 

Hnlcn(rl), tll = sin(J)(lf) t V (v)cos@(q) 
(1.12) 

This is the integral equation of the problem. For p,, = cord this equation yields 

Nekrasov’s equation [4] for a finite depth. 
In solving Eq. (1.12) we assume that 

Q(O)=&%= ~e”d,sinnB (1-W 
-1 

where e is a small dimensionless positive parameter ; d,, are given real numbers ; the 

infinite series eldI I + e*I&I + t’Ihl+ ..- 

converges in a disk of radius t, > 0. 
We note that p. in the initial problem is a periodic function of z specified to within 

an additive constant. It can be shown that solving our problem under condition (1.13) 
is equivalent to snecifving the series 

I. dpo --=- 
w d.r 

Here we can either assume that the coefficients con’ are given and use them to deter- 
mine the d,,, or, conversely, we can determine the coefficients cm,,’ (m = 1, 2,...) in 

terms of the dn- If we Set d, =d,,,, .+ ,&,+e2d,+... 

(this will not be our approach), then either the cmR’ (m = 1,2,...) can be assumed 
given and used to determine di, (i = 1, Z,...), or vice versa. 

The parametric equation of the wave profile can be obtained from (1.5) in the form 
0 

z = - & 1 e-‘(x) cos U) (tj) dq, Y= - & 1 C(n) sin @(q)dq (1.14) 
0 aJ .i 

Formulas (1.14) indicate that in solving the problem we must determine not only @ 

but also T (e).These functions are given by the following trigonometric series: 
tD 

- r(e) = _jo + 2 rl,cos ne, m (e) = i B,sbe (1.15) 
h-1 n=1 

Expansion of the function In f (u) = i0 (u) in a Laurent series yields the following 

relations between the coefficients of these series : 

A,=$B, (n = I, 2. 3. . .) (l.i6) 

Thus, if we know B,,,we can find all of the A,,except Aa. 
Let us transform Formula (1.7). Setting 

3 nl 
PO=23 (Li?) 

we find from Eqs. (1.15), (1.17) and (1.7) that 

p=poexp 3 
[( 

Ao+ 5 A,,)] 
n=l 

(l.i8) 
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Setting 0 = %r in the right side of the first formula of (1.14), we obtain - 1, since 
the resulting decrease in z is equal to 1. In this way we arrive at the following equa- 

tion for determining Ag )r 

exp (- A,) = & f exp [--r(q) - A,] co3 Cn (q) dq (1.19) 

where - T @II) - Aa does not coitain Aaby virtue of (1.15). 

Setting 

Y(O)= [i~~~~~~.~~~~]-l (i-2@) 
0 

we reduce Eq, (1.12) (as in the case of infinite depth p]) to an equivalent system of two 
equations with the unknown functions Q, (0) and Y (0). To this end we differentiate 

(1*20) with mspct to 8 to Obtain ye (8) r+ _ py2 f(j) H I[@ t(j), 01 

Integrating both sides of this equation over 8 and noting that for 0 = 0 it is neces- 
sarily the case that Y (0) xz i, we obtain , 

By virtue of (1.20) Eq, (1.12) becomes s& 

Q’(8)=1” $li’(rlt@)HI@,rl1Vlfd9 
0 

(1.22) 

It is easy to verify that system (1.21). (1.22) is equivalent to single equation (1.12). 
Let us reduce Eq, (1.18) to its final form. We set 

Ir = k{w p(41 + 5 A)] -i + i} = po(i + p’) 
-1 

(1.23) 

J&f = exp [3(Ao + jl A.j] -1 (1.24) 

From (1.19) and (1.15) we obtain 

By virtue of (1.25) Eq. (1.24) finally becomes 

p’exp 32 A, ( OD 
-1 

) [& f e=p (i A, COS~~)COS~)(~) dtlJ4- i (i-26) 
0 rpt 

Thus, we have reduced the problem to the determination of the functions @ (0, L) 
and ‘#s (0, 8) from system (1.21), (1.22), the parameter p (8) from (1.26). (1.23). and 
the coefficient A,, (E) from (1.19). There are two cases to be considered : p. # Sn 
and #lo =Vn. 

In the next two Sections we show that in theffm case the solution @ (0, e), \y(fi, t), 
p (e), A0 (e) is constructed in the form of series in whole powers of the parameter t. 
The second case is illustrated by considering the value pr =V,. 

The solution is obtained here in the form of series in powers of a%. In both cases we 
use the methods of Liapunov and Schmidt [5] to prove that these series converge abso- 
lutely and uniformly For O< 9 < 2a and for small values \ $I< c, < 8. and that 
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they yield the unique solution of the problem which is small with respect to 6 and con- 
tinuous in 8 (Theorems 1 and 2 ; here et is the smaller of the numbers es’ and ~3. 

2. The solution in the cane po# v,. In the so-called regular case system 
of equations (1.22), (1.21) can be rewritten as 

cu(e)=r.(!+ll.)‘Sli(‘1.B)I’l’(l)fP(1)1dtl (2.1) 
0 

F I@( q), Y* (q), el = sin CD (7) - @ (11) + Q (9) (cos Q, - i) + 

+ Q h) - 4 sinq i- Y* (11) 11 I@ (q), 91, F1 I@ (q), Y* (q), ~1 = 
= Q cos CD - edI sinq + sin CD - cf, + IY** (q) + 2 Y*(q)1 H lfD (q), ql 

Let us transform the first equation of (8.1). It is clearly equivalent to 

a, (0) + p (0) = PO (1 + P’) 7 i\” (11, 0) [:I) (V) + P (rl)l dll -!- P (0) (2.3) * 

We denote the resolvent of the linear &zgral equation with the kernel K (11, 0) and 

the parameter p. fi -#-l.~‘) by R lO,q, p. (i -/-p’)]. Then, following the IAapunov- 
Schmidt method, we can rewrite Eq. (2.31, and therefore (2.1)‘ in the following equiva- 

lent form: 

@,(@=P,(! +P.))SIIIl~,e*po(L+I*.)lP(‘I)dl (2.4) 
0 

Let us express the resolvent R in explicit form. To this end we make use of a formula 

for the resolvent r (J, 3; k) which is valid in the case of a symmetric kernel K (Z, y) 

(e.g. see Goursat [6]) 

In this case 2 =q, !/ = 8, a = lo,, (1 -j-p’), &, = V, the resolvent is denoted by 
& and the kernel K (q, 0) is given by Formula (1.10). We therefore have 

(2.5) 

To reduce Eq. (2.4) to its final form, we substitute into it expression P (q) from (2.2). 

2x 

+r.(i+P')fSIR1~,BrPo(!+C')IF[~(rl),Y(ll).eld~ 

u 

Making use of Formula (Z.5), we obtain 
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The preceding equation therefore assumes the following final form: 

Let us transform the second equation of system (2.1). Carrying out the integrations 

and self-evident ~ansformations in its right side, we obtain 

We begin by solving system (8.6), (‘2.7). assuming thar the parameters 8 and F’are 
real given quantities of small absolute value. We then define I” (I) in such a way as 

to ensure fulfillment of relation (1.26). 
Solving system (2.6), [Z. 7) by the method of successive approximations, we take as 

our first approximation 
u+l) (e) = cdlF(i+yr3 sine 

ol--)iro +*‘I 

Any kth approximation (k > i and finite) is given by Formulas 

@@I (0) ‘= e WI (1 + Ir’) 
V2--)rOfi +p’) sine + 

c 

0 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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We can show by mathematical induction that the quantities @(‘a) (e),uf*(r! (0) are 
analytic functions in t and pf for f e \ <Ed and f p’ 1 < p”. 

We can show in the usual way that the successive approximations converge to the solu- 

tion CD (0, e, CL’), Y* (0, e, $) of system (2.6). (8.7). This solution is the unique 
solution of the system which is small with respect to e and p’ and continuous in 8 Both 

functions are analytic with respect to e and p’ for 1 e 1 ( q’ < e, and 1 p’ 1 < pe 
fn order to construct Eq* (X,26) in explicit form we must verify the convergence of the 

series At +-As + Aa+ . . . To do this we must find T (0) from (1.15). The foregoing 
implies that the derivative dt 1 &I defined by Formula (1.8) is a continuous function 
in 8 for 0 4 8 i_c 2~ and an analytic function in e and v”, The function z (0) is there- 
fore expressible as the absolutely and uniformly convergent first series of (1.15) ; its 
terms and sum are analytic functions of e and p’ for 1 e 1 < t$’ and ] p’ 1 < p*. More- 

over, the second series of (1.15) for Q, (8) has the same properties. Thus, the series 

A, f A, +.,. is convergent and the right side of EEL (1.26) is an analytic function of 
e and $.For E = 0 Eq, (1.26) has the solution II’ = 0. On the other hand, transpo- 
sing all terms to the left side in Eq. (1.26) and denoting it by G (e, JA’), we obtain 

G (8, $1 = 0 @**a 
Since 

( 1 
$- -1 

t-P’=M 

it follows by the theorem on implicit functions that Eq. (2.12). and therefore (I&26), has 

the unique solution p’(e) for small values of e . This solution satisfies the condition 

lim p’ (e) = 0 (8 3 0) 

and is an analytic function of I) for f t 1 ( t+’ 6 tE’ . Substituting in this expression 

for # (I& we find that - x (0) - Al and Q, ($) are series in powers of e. Hence. 
by (1.19) the expression orp f- A,,) = x (e) is also an analytic function of e , and, 
since by hypothesis lim Aa = 0 as e -j 0, it follows that x (0) = i, Hence,- Al= 

= In x (8) is also an analytic function of E for I e J < e,” < %‘. 
On the other hand, we note that the parameter $ in Eqs. (2.6) and (2. ?) had fixed small 

absolute values, Having found p’ from (1.23), we can find p. We have therefore proved 

the following theorem. 

Theorem 1, System (X,22),( l,Zl),(l. 26),( 1.19) for jlo # V, has a uniqe solu- 

tion~(~,~~, Y(& 4, PM Aa{ 1 hi h e w e is small with respect to e and continuo~ 

in 8 (0 < 8 ,C 2~) . This solution is an analytic function of e for 1 8 1 < et’. 
This theorem implies that in solving. system (X.22), (1,21), (1.26), (1.19) it is Sjmplest 

to determine the functions CD ((j, e), Yf f(j) e), the parameter p‘ fe) or p fe) , and 
the coefficient Aa (EEf in the form of series in powers of 8. 

The results of the appropriate computations including terms containing esare as follow: 
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A, (e) = - E* l/d (V, vls - 1) 

Here 

C dm 11=-* VI - J4 Cm = 

c PO 011 C PO %a 
(2.14) 

la=--, 
j/n v1-)Io ~=~V*-p@ 

The polinomials ala and ass are linear with respect to the quantities C,*, Cats, 

Crr9 Gs G and et*; ye* (0) is a polynomial which is linear with respect to case--i, 

COSB- i, cos3e- 1 whose Coefficients are linear polynomials in t&, C,s, C11’, 

3, The solution in the cake pi= VI. In the general case of so-called 

branching it may turn out that RIO = v,,. However, we shall limit ourselves to the exam- 

ple where pa = Vr. Direct computations show that in this case the solution must be con- 
structed in the form of series in powers of et C We can show this by an extension of the 

general methods of branching theory as developed by Liapunov and Schmidt. 
Taking the first equation of the system in the form (2.1). we transform its kernel in 

accordance with Formula c) 
1 sin nq sin n0 __ E(q. 0) =&sinqAnO+ & 1 

v (3.1) 
. 

rst VI 
- G sin q sin 0 + N (q. 0) 

The above equation then becomes 

e(0)=r(r+~O)rNh,O)lO(rl)+P(tl)ld~+ 
0 

Here 

+p0(l-i-r3 
[ 

21 

fsinO-!- &- 
s 

P(q) sinqdqsin0 (3.2) 
0 

1 
2% 

f = & S 0 (q) sin q dq (3.3) 
0 

According to the familiar lemma of Schmidt [5] the number b = v1 is not an eigen- 

value of the kernel N (rl, f-b 

Equation (3.2) is equivalent to 

@~e~+P~e~=b~t +p~~e.1.~,~ e~~@(‘l~+P(q~]~+P(e)+ 
; 

(3.4) 

We denote the resolvent of the Fredholm second-order integral equation with the ker- 

nel ti (VI, 0) and the parameter pe (i + p’) by R1 In, 0, pi (i + p’)l . Then, following 
the Liapunov-Schmidt method [5], we represent Eq. (3.4) in the equivalent form 

~(~)=po(i +p’) [Esinkl +&-*i P(rl)sinqdqsinO] + 

tn u 

+ Pa (1 + IL’) 5 Rl [rl. 6 f4 (1 + IO1 x 
0 
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We note that Eq. (3.5) is valid for p’ = ‘0, since p = vr is not an eigenvalue of the 
kernel ,I’ (q, 0). As in the case of the resolvent R of Sect. 1, we write& in explicit form, 

02 
R,[q. 0, po(1 4-r’)]=+ 2 Vsiyqsinae 

?I=¶ n PO (1 + P? (3.6) 

We leave the second equation of the system in its old form (2.1) ; we also leave Eqs. 
(1.19) and (1.26) in their old form. 

As in Sect. 1, we first assume that p’ is a fixed quanti~ of small absolute value and 

solve the system consisting of Eqs. (3.5) and second Eq. (‘2.1) by the method of successive 

approximations. This yields the functions CD (6, e, &, p’) and Y* (0, c, 6, p’) as analytic 

functions of a, p’ and g for : F I< et” ( &, Ip’l< pa0 j and 1 & I< &*. As in Sect. 1, we 
solve Eq. (1.26) for p’ and obtain p’ (c, E) in the form of a series in powers of e and & 

for 1 E 1 < E;’ < F,” and j i 1 < &ID < frl’. This obviously implies the fulfillment of Eq. 
(3.5) and the second equation of (2.1) in which p’ was assumed to be a real quantity 

arbitrarily small in absolute value, From Eq. (1.19) we determine A0 (e, &) as a series 
in powers of e and 5 for 1 e I < e,” < F,” and 1 g I < t’ 6 b”. 

According to the general theory of Liapunov and Schmidt [5], in order to convert from 
Eq. (3.5) to the initial first equation of (2.1) we must express the parameter 5 in terms 
of the parameter e in such a way as to satisfy the branching equation obtainable from 

Eq. (3.3) by substituting into it the previously determined function d, [Q e, g, p’ (e, E)]. 
We recall that on substituting the function & (e) obtained from the branching equation 

into the expression for @ In, F, t, p’ (e, &I, V* jq, e, 5. p’ (e, {)I, p‘(e, 8,) and AD (e, 8, 
we have the solution of the initial system, Thus, according to the general theory the 

number and form of the solutions of the basic system as functions of e are determined 
by the solutions of the branching equation. Let us construct the branching equation. As 
will become clear below, in our case we can stop with the terms containing 51. To this 
end we must determine the following approximate expression from (3.2) : 

(3.7) 
Q, (0. e, E) = %pi (8) E + @IO (9) e + @W KW + % 03) Ee + QO (8) 8% + @M (W 

We must also find P (8, E. 5). p (E, E) = M (1 + p’) I AO (e, 5). with the same degree 
of accuracy. Omi~ing all intervening computations and limiting ourselves to the term 

containing sin B required for the branching equation in the expression for at, , we 

obtain 

mI, (0) = - 2~~ dl sin 0 f s sin 28 
(3.8) 

sin 20 

We have made allowance for the fact that & = vr in the expression for mns (6) . 
Taking account of values (3.8). we substitute the expression for Qt from (3.7) into (3.3). 
This yields the branching equation in the following approximate form: 
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tile - WVl4i - 3vldl*e* + ai* = 0 (3.9) 
v,* 

z = 24 (V* - v,) [(I5 - W) (Vs - vr) + 3v+ (2vz - v,)) (3.iO) 

Approximate equation (3.9) is sufficient for determining the number and form of all 

the small solutions of the complete branching equation. Constructing Newton’s diagram 

for (3.9) [S], we see that its decreasing part consists of one segment (0‘1) and (3.0). The 
branching equation therefore has three small solutions, each of which can be expressed 

as a convergent series in powers of e “? Since a > 0, only one of these solutions is real. 

The problem under consideration therefore has a unique continuous small solution ; this 

solution can be expressed as a convergent series in powers of t’f% 

We have therefore proved the following theorem. 

Theorem 2. System (1.22),(1.21),(1.26), (1.19) for h = vl has a unique solution 
CD (B, e), P (9, e), p (e), A0 (e) which is small with respect to E and continuous in 
0 (0 *$ @ < 21). This solution can be expressed as series in powers of a% which converge 

for 1 e 1 < e8” < q”. 
This theorem implies that in solving system (1.22). (1.21),( 1,26)D, (1.19) for. PO = VI 

it is simplest to determine directly the functions Q, (0. e). Y* (0. e) = V (0, e) - i, the 
parameter p’ (t) or p (e) , and the coefficient Al (t) as series in powers of et’*. 

The results of the appropriate computations up to terms with s’h are as follows: 

Q, (e, e) = - e’!* (IQ)‘!* sin e f e”* (d$f’= 2 ($_ vI) sin 28 
(3.111 , . 

y* (0, e)=- 8“’ (d,p)“* (co.9 8 - I) $ e’:a (d13)“‘vls 
f 
i 

2vz - g 
- cos e i- 4 (Vt _ sj (cos 20 - f) 1 
I (5VlZ -f- 9) (vr - VI) + 3v*vr’l 

a~e)=--e~/J(d~~~~a1/((~-1) (fi=$-) 

4, Dttsrmfnrtlon of the WOVQ proffls. The wave profile is given para- 
metrically by Eqs, (1,14& Substituting the resulting functions r (8, e) and @(&‘I ,&) 
into these equations and eliminating fj , we obtain the equation of the profile in the form 

Y = Y (z, 8). 
The profile equations to within second-order terms for the two cases considered above 

are as follows: 

for PO # vn, 

y (z, e) = + [ECU, (cos kx - 1) + ;e+C,,‘- c&i -cos2kx))~k = Fj 

where c,, and c,, are given by Formulas (2.14) ; 

for p. = v1 , 

Y@*e)=+ I --e"qd,~)%(coskz - i) +'/ze"J(dJ.3)"* vl'k - 4v1) (1 - cos 2kz) 
S(V,- VI) 1 

As stipulated, the origin lies at the wave crest. Hence, on setting vr ( p. < vs 
and analyzing the principal terms in the formulas for y = y (z, e), we conclude that 

we must set d; ( 0. 
Finally, we note that po = Vr is the special case mentioned at the beginning of the 

paper. 
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This paper considers the rotatory motion of a cylinder of finite height,filled with a vis* 
cous incompressible fluid, and subjected to an elastic moment, the cylinder being initially 

at rest in a position obtained from the equilibrium position by rotation through a small 
angle . The solution of the problem is constructed in the form of a Laplace-Mellin 
integral. The vibration spectrum of the system is studied and a spectral expansion for 
the solution obtained, the latter yielding a description of the nature of the cylinder’s 
motion for various values of the parameters involved. 

This problem was solved earlier under the assumption that the oscillations decay har- 
monically, which assumption is valid in a certain time interval when the ratio of the 

moments caused by the viscous friction forces to the maximal elastic moment is suffici- 
ently small fl and 21. A general investigation of the characteristic equation for the oscil- 
lations was not carried out, and the problem in the large (with account taken of the lni- 
tial conditions) was not posed. The present paper fills this gap. 

It is established that for any positive values of the parameters the rigid cylinder passes 
through the equilibrium position. Depending on the values of the parameters, two things 

can happen : (1) the *cylinder passes through the equilibrium position an infinite number 
of times, or (2) the cylinder passes through the equilibrium position an odd number of 
times and then approaches the equilibrium position as time approaches infinity, from the 
side opposite that of the initial position. 


